

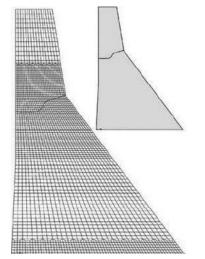
A comparative study on seismic stability analysis of 2D and 3D concrete gravity dam

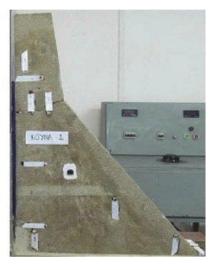
Dr. Arnab Banerjee

Assistant Professor, Civil Engineering Department, Indian Institute of Technology Delhi

Mr. K. Alam Chowdhury

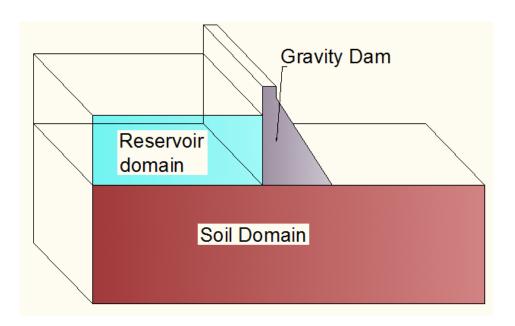
Blockchain Engineer, MarhabaDeFi, Sydney, Australia





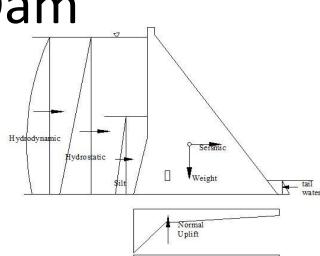
Importance of seismic analysis of dam

Shih-Kang Dam- Chi-Chi earthquake, 1999


Wang et. al. (2015) "The Influence of Initial Cracks on the Crack Propagation Process of Concrete Gravity Dam-Reservoir-Foundation Systems", Journal of Earthquake Engineering

Modelling of Dam

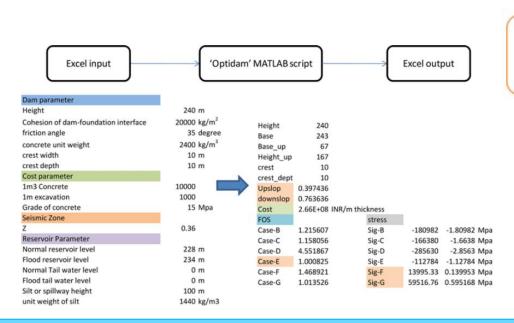
- 3 phase system
- 2D or 3D domain
- Boundary conditions
- Loading
- Interface property

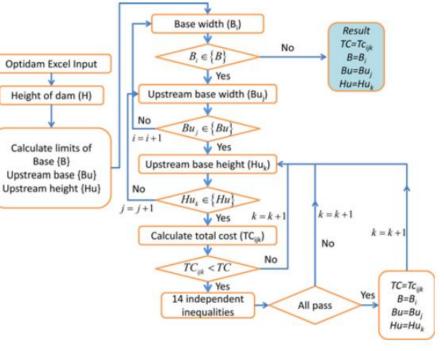


Loading on Dam

- Self weight
- Hydrostatic Pressure
- Uplift Pressure
- Silt pressure
- Hydrodynamic force
- Inertial load

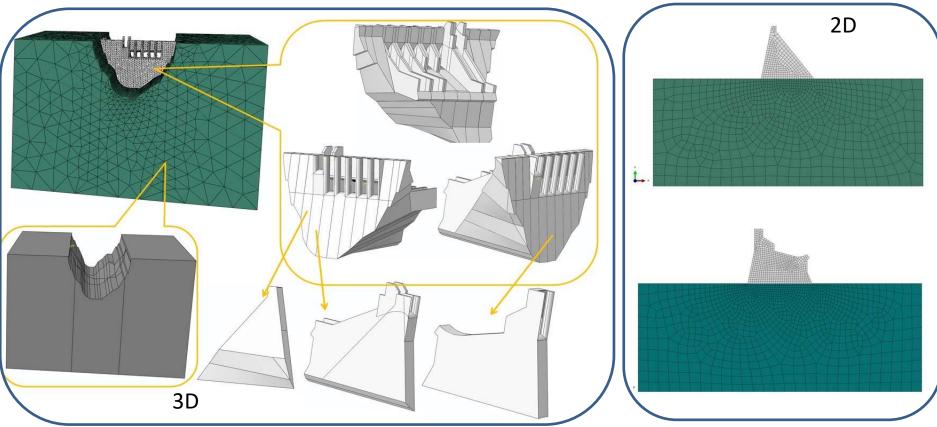
Table 1. Different Load Cases								Uplift
Case No.	Self weight of dam	Upstream reservoir level	Silt pressure	Tail water level	Ice and wave pressure	Uplift pressure	Earthquake load	Permissible tensile stress
Α	Yes	Х	Х	Х	Х	Х	Х	0
В	Yes	Normal	Yes	Normal	Yes	Drained	Х	0
С	Yes	Flood	Yes	Flood	Х	Drained	Х	0.01fc
D	Yes	Х	Х	Х	Х	Х	Yes	0
E	Yes	Normal	Yes	Normal	Х	Drained	Yes	$0.02f_{c}$
F	Yes	Flood	Yes	Flood	Х	Undrained	Х	$0.02f_{c}$
G	Yes	Normal	Yes	Normal	Х	Undrained	Yes	$0.04f_{c}$





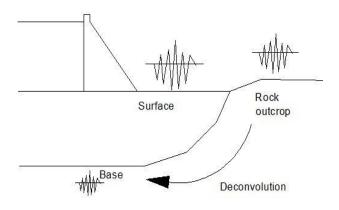
Obtaining a section of a Dam

• An in house MTLAB based optimization **COde**



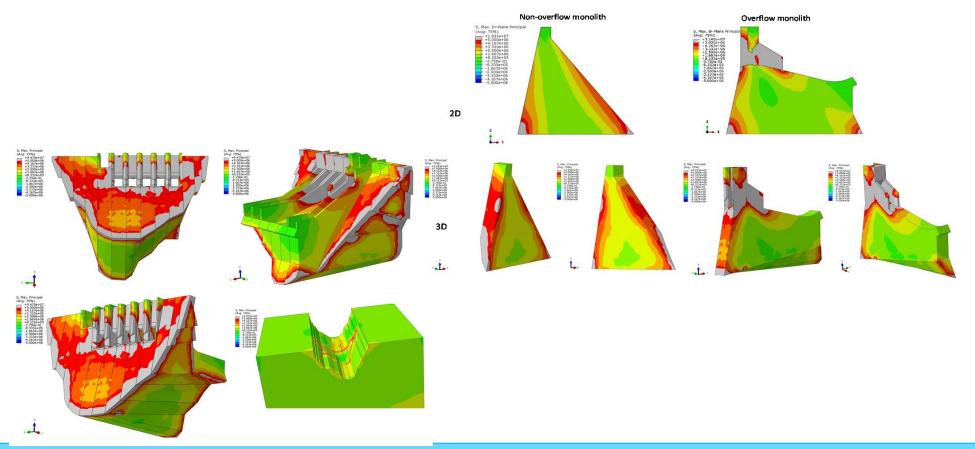
Banerjee et. al. (2014), "Optimization and Safety Evaluation of Concrete Gravity Dam Section", KSCE Journal of Civil Engineering

Finite Element model

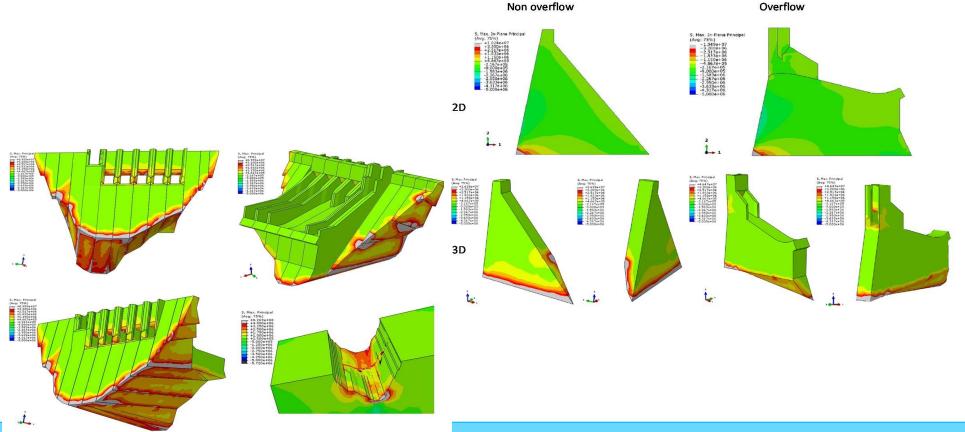


Ground motion

- From micro-zonation study we can get the site-specific ground motion at rock outcrop.
- It needs to be deconvoluted for applying at base of the foundation


Boundary condition

• Non-reflecting Boundary condition


Response Spectrum analysis 2D vs 3D

Time-history analysis 2D vs 3D

Results of displacement

		Direction	
Monoliths/ Blocks	Analysis Method	Horizontal (in mm)	Vertical (in mm)
	3D–Time history Method	31	51
Non	3D–Response Spectrum Method	63	17
Overflow Block	2D–Time history Method	117	75
DIOCK	2D–Response Spectrum Method	113	25
	3D–Time history Method	34	53
Overflow Block	3D–Response Spectrum Method	117	34
Block	2D–Time history Method	136	83
	2D–Response Spectrum Method	160	47

Conclusions

- 1. The time period of the 2D and 3D model are comparable.
- 2. The result of the response spectra analysis of 2D and 3D dam is also analogous.
- 3. The response of the response spectrum is much more than that of time domain method,
 - 1. Effect of radiation damping and
 - 2. the dissipation of energy due to the contraction joints opening and closing in case of 3D time history analysis which can't be simulated in response spectra analysis.
- 4. In case of response spectrum analysis, the effective damping ratio as developed by Chopra shall be used to get comparative stress output as in case of time history analysis.

Conclusions

- 5. The 2D idealization of 3D dam are always conservative, provided there is no tapered or unsymmetrical base of dam monoliths.
- 6. The monoliths situated on the steep slope must be investigated carefully, because the asymmetric base shape may induce stress concentration at the sharp corner.
- 7. The steep slope of the dam foundation need to be thoroughly analyzed and stabilized to counter stress generated due to dynamic dam-foundation interaction.
- Finally, 2D idealization is valid if the slope of the canyon is flat and all the monoliths has flat base. However, in case of narrow steeped riverbed profile 3D analysis of concrete gravity dam is highly recommended

Acknowledgement

Authors would like to acknowledge Late Prof. D.K. Paul for guiding several portions of the simulations and perceiving the idea

Thank you