

Assessment of current reservoir sedimentation rate and storage capacity loss: an Italian overview

Epari Ritesh Patro, Ph.D.

(Postdoc, Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, Finland Email: ritesh.patro@oulu.fi)

RELAID: REnaissance of LArge Italian Dams

The project intends to set guidelines for a functional re-habilitation of large dams, i.e. the one associated to water-related issues, addressing the following issues:

- re-think of design scenarios of dams accounting for modified climate conditions, and considering not only the streamflow variable, but including also sediment transport and debris inflows;
- update of dam operations to accommodate modified forcings and needs;
- update of the criteria to map hazard scenarios in downstream and riparian areas;
- illustrate demonstrative cases considering post-construction assessment of damreservoir systems and future scenarios.

international Dam Safety conference Vourg Engineers Forum The framework

INTERNATIONAL DAM SAFETY CONFERENCE

Health of Italian dams and reservoirs

INTERNATIONAL DAM SAFETY CONFERENCE

Study Area

Data

Reservoirs analyzed are distributed throughout Italy, majorly within the following ten administrative regions of Piemonte, Emilia-Romagna, Abruzzo, Lazio, Sicily, Tuscany, Marche, Veneto, Sardegna, and Lombardy.

Dam Rehabilitation & Improvement Project

Central Water Commission

- Topographic/ catchment data
- Reservoir characteristics and bathymetry data

Status of 50 Italian reservoirs

- The average age of all dams considered is 69 years.
- the average value of *GI* for all dams turns out to be equal to 38%.
- None of the fifty dams examined has TI > 2%.
- Ten reservoirs (20%) had a significant decrease in TE greater than -50%, nine reservoirs (18%) have percentage decrease in TE in the range of -25 to -50%, while only 31 reservoirs (62%) had a decrease in TE less than -25%,

Macro-area	Number of reservoirs	<i>GI</i> < 5%	<i>GI</i> ≥ 5%	Average GI
Alpine	26	2	24	33%
Apennine	24	0	24	43%
All	50	2	48	

The number of reservoirs versus the time interval in which the entire storage capacity is exhausted.

10-12 October 2022 at Jaipur, Rajasthan (India)

Percentage loss of reservoir capacity, aggregation by macroareas.

- The catchment area of the fifty dams examined varies from a minimum of 2.10 km² to a maximum of 2642.01 km²
- For increasing catchment area, a net decrease in the *SSY* is observed.
- increase in catchment area the *TI* also increases.
- a decreasing trend was observed with TI as the reservoir capacity increases.

Application of the RUSLE model for the calculation of soil loss – G/S

For each basin, the average soil loss value expressed in $[t \cdot ha^{-1} \cdot year^{-1}]$ calculated automatically by the GIS software is taken as the annual average soil loss value.

Sediment Delivery Ratio model

an empirical relationship between SDR and the representative variables of climatic, morphological, and hydrological catchment characteristics, and land use from multi-parametric statistical regressions.

13 variables initially A variables found to be significant A variables found to be significant $R_c = 4\pi A/P^2$ $E A P_{60}$

JACKKNIFE REGRESSIONE MODEL:

 $logSDR = \beta_1 logR_c + \beta_2 logE + \beta_3 logA + \beta_4 logP_{60} + \beta_0$

10-12 October 2022 at Jaipur, Rajasthan (India)

INTERNATIONAL DAM SAFETY CONFERENCE

Conclusion

INCOLD

Indian Committee on Large Dar

Young Engineers Forum

Reservoir sedimentation threatens the functionality of the dam-reservoir system.

A continuous-time monitoring of this variable would be very attractive;

-A new SDR model with good performance in Alpine region.
-Performs better than empirical SDR models developed for Italian regions in the past.

ALPI VS APPENNINI : Different approach is needed both in management and in formulating legislations.

-Existing legislations on reservoir sediment management are inadequate. -Sediment mitigation measures are not often properly planned/applied by dam operators in Italy

The impact of climate change on sediment production in turn on hydropower generation are rarely studied.