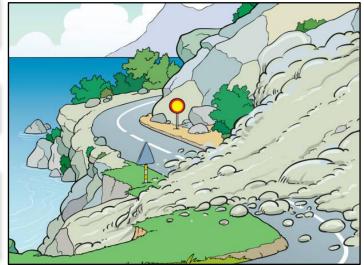


MITIGATION AND ADAPTATION OF CLIMATE CHANGE IMPACT IN HYDRO PROJECTS

Prepared by: Ankur Sharma (Deputy Manager) NHPC Ltd. Secretory Resources, INCOLD (YPF)

We will discuss.....

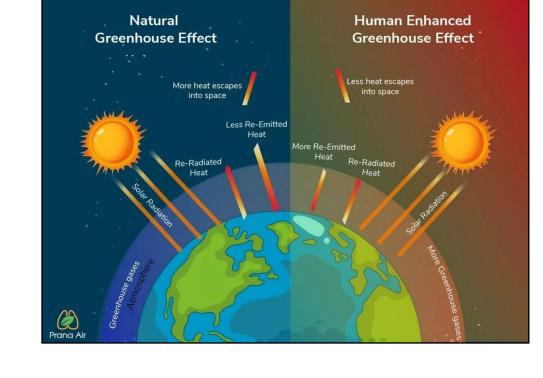
What is Climate change


Its Impact on Hydro Projects

Adaptation Techniques

Mitigation Techniques

How Hydropower can minimizes climate change



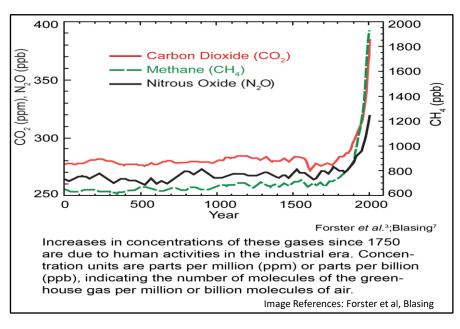
Global Warming & Climate Change

10-12 October 2022 at Jaipur, Rajasthan (India)

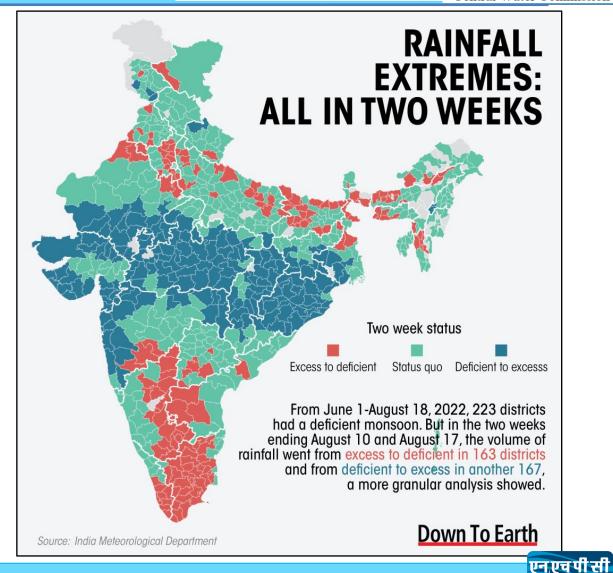
- Global warming is the long-term rise in the average temperature of the Earth's climate.
- Global warming is the mainly human-caused increase in global surface temperatures, while climate change includes both global warming and its effects, such as changes in precipitation, wind, etc.
- The current Earth climate warming trend is extremely likely (over 95% probability) to be the result of human activity since the mid-20th century.

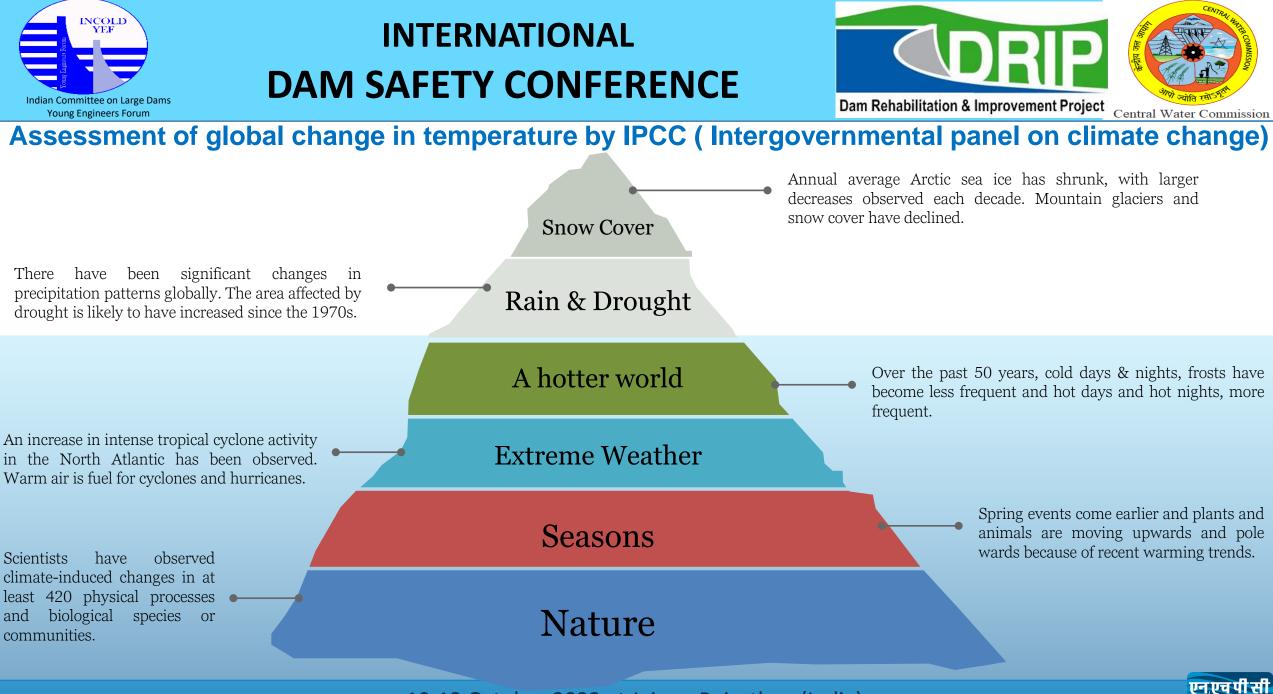
ग्न एच पी सी

NHPC

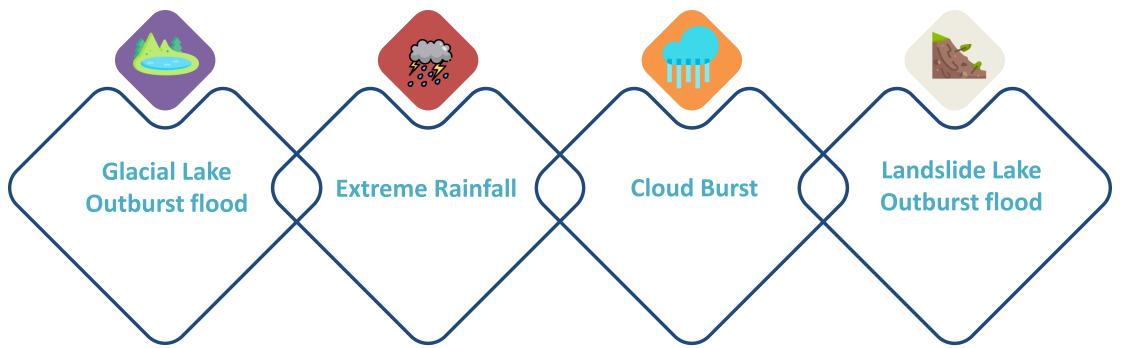


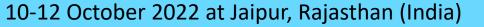
Evidence of


Rapid climate



- A decline in monsoon rainfall since the 1950s has already been observed.
- The frequency of heavy rainfall events has also increased. *
- ✤ A 2°C rise in the world's average temperatures will make India's summer monsoon highly unpredictable


10-12 October 2022 at Jaipur, Rajasthan (India)


NHPC

Some of the Impacts of Climate Change on Hydro Projects



Impact of Climate Change on Hydro Projects

Glacial Lake Outburst flood (GLOF)

- A glacier lake is a water body existing in sufficient quantities and extending with a free surface over an ice shelf and/or glacier floor. A lake usually forms between valley glaciers and ice streams in restricted areas.
- A glacial lake outburst flood (GLOF) is a catastrophic glacially-driven natural calamity, occurring when dams containing glacial lakes fail, leading to rapid surging of water in the bed of the drainage system.
- Results in huge loss of property and life at downstream.

एन एच पी सी

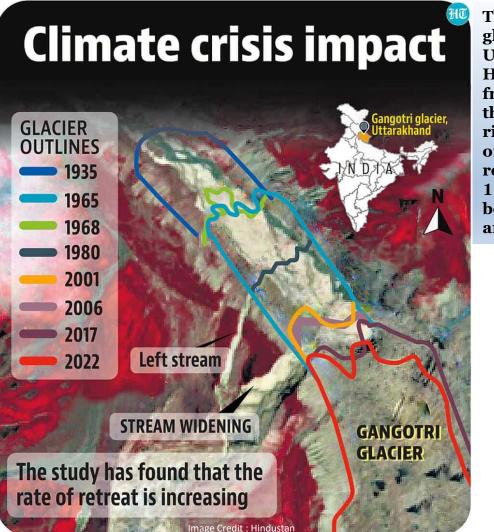
NHPC

Its triggering factors Image reference: (Article)Modeling a glacial lake outburst flood process chain: The case of Lake Palcacocha and Huaraz, Peru R G R R Size of Lake **Avalanches Rise in Heavy Rain** Rock Glacier Earthquake Volcanic Water Fall Fall **Temperature** Eruption Pressure

Extreme rainfall/ Cloud Burst

- A cloudburst is an extreme amount of precipitation in a short period of time.
- Sometimes accompanied by hail and thunder, which is capable of creating flood conditions.
- Rainfall rate equal to or greater than 100 millimeters (3.9 in) per hour is a cloudburst.

- Orographic Lift:- when an air mass is forced from a low elevation to a higher elevation as it moves over rising terrain. As the air mass gains altitude it quickly cools down adiabatically and creates clouds and, under the right conditions, precipitation
- When a warm air parcel mixes with cooler air, resulting in sudden condensation



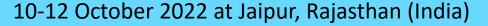
CARTOSAT-2A image of 20-June-2013 showing post-flood situation

The Gangotri glacier in the Uttarakhand Himalayas, from where the Ganga river originates, retreated bv **1,700** meters between 1935 and 2022

CARTOSAT-1 image showing pre-flood situation

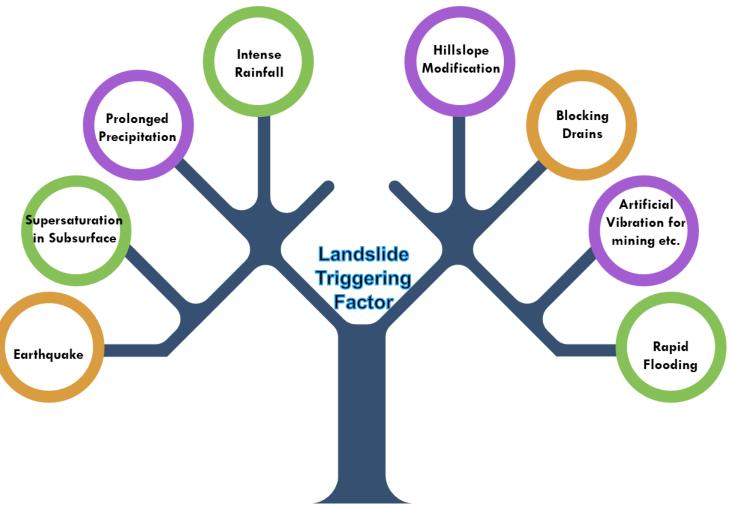
Photo courtesy: National Remote Sensing Centre, Indian Space Research Organisation

Satellite imaginary before and after Kedarnath (Extreme rainfall + GLOF event)



S.No.	Date	State	Area	
1	September 28, 1908	Telangana	Musi River	•
2	January 8, 1966	India/Bangladesh	Ganges Delta	
3	July 1970	Uttarakhand	Alaknanda Valley	
4	August 15, 1997	Himachal Pradesh	Chirgaon (Shimla)	
5	August 17, 1998	Uttarakhand	Malpa village	
6	July 16, 2003	Himachal Pradesh	Shilagarh in Gursa area of Kullu	
7	July 6, 2004	Uttarakhand	Chamoli district	÷.
8	26 July 2005	Maharashtra	Mumbai	
9	August 14, 2007	Himachal Pradesh	Bhavi village in Ganvi	
10	August 7, 2009	Uttarakhand	Munsiyari in Pithoragarh district	
11	August 6, 2010	Ladakh	Leh	
12	September 15, 2010	Uttarakhand	Almora	
13	September 29, 2010	Maharashtra	NDA Khadakwasla, Pune	
14	October 4, 2010	Maharashtra	Pashan, Pune	
15	June 9, 2011	J&K	Near Jammu	
16	20 July 2011	Himachal Pradesh	Upper Manali	
17	September 15, 2011	National Capital Territory of Delhi	Palam area	
18	September 14, 2013	Uttarakhand	Ukhimath in Rudraprayag district	
19	June 15, 2013	Uttarakhand	Kedarnath and Rambara region of Rudraprayag	
20	July 31, 2014	Uttarakhand	Tehri Garhwal district	
21	September 6, 2014	J&K	Kashmir valley	
22	December 2, 2015	Tamil Nadu	Chennai	
23	July 1, 2016	Uttarakhand	Pithoragarh	
24	July 20, 2017	J&K	Thathri town of Doda district	
25	July 28, 2021	J&K	Hunzar hamlet in Kishtwar district	
26	8 July, 2022	J&K	Pahalgam en route to Amarnath cave shrine	

- More than 70% of Major cloud bursts recorded in India are in the Himalayan Region.
- We have to be more cautious and vigilant for such events as most of the hydro Projects owned by NHPC limited are in Himalayan region.



एन एच पी सी

NHPC

Landslide lake outburst flood (LLOF)

- Landslide/ Avalanche: A landslide or snow avalanche can create obstructions in the normal path of a flowing river or stream, which results in the formation of a temporary pool, or a dam-like situation.
- When this obstruction finally gives way to the force of accumulating water, it creates a situation similar to a lake burst. This is called Landslide Lake Outburst Flood.
- In the case of an avalanche, snow adds to the volume of water.

04 May 2000

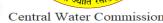
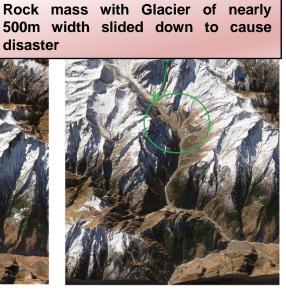


Image Source:https://landsat.visibleearth.nasa.gov

23 September 1999

Dam Rehabilitation & Improvement Project Central Water Commission

Tapovan- Vishnugadh Hydro Project after the Event.



Artificial lake formed at Rishi Ganga river due to the debris of Rockfall.

ŃНРС

disaster

Undisturbed snow and ice on Jan 20, 2021, at origin point

Origin point, direction of slide, and debris on Feb 21, 2021

HYDEL PROJECTS

BEARING THE BRUNT

Tapovan Vishnugad, NTPC

DAMNED BY CLIMATE CHANGE

State govt data says over 150 people have been reported missing at NTPC & Rishi Ganga project site

Locals inspect the site near damaged Dhauliganga hydropower project at Reni village, on Sunday

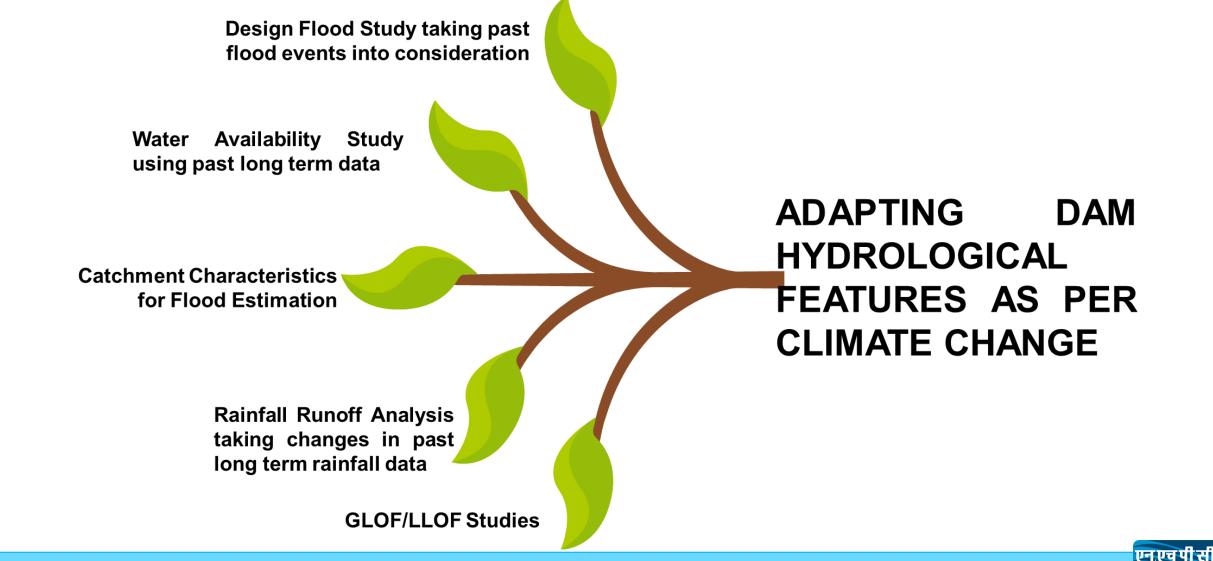
520 Mw

CHAMOLI HORROR **30 WORKERS TRAPPED IN TAPOVAN'S** TUNNEL

INDIA TODAY

No lessons learnt: Glacier burst Mamata's govt reflection of the Left: PM Modi in Bengal causes flood, over 170 feared dead • A portion of Nanda Devi glacier breaks in Tapovan area of Joshimath in Uttarakhand's Chamoli district

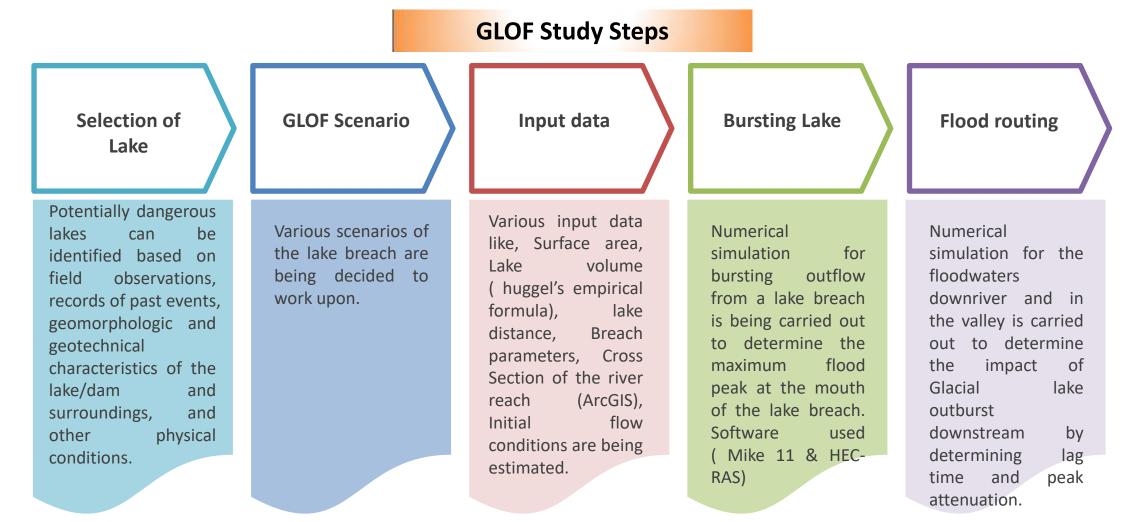
• Second massive tragedy in the hill state after 2013 Kedarnath disaster caused by rapid melting of snow

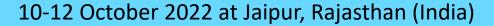



Vaha Vikas Aghadi govt a 'three vheels autorickshaw': Amit Shal

HPC

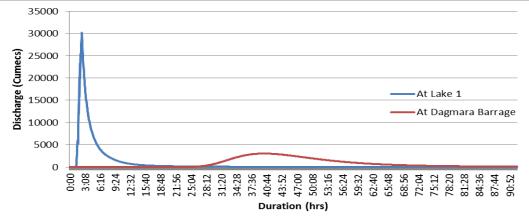
10-12 October 2022 at Jaipur, Rajasthan (India)

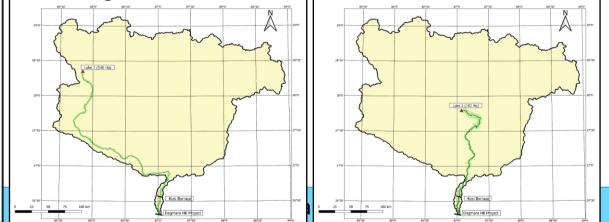

NHPC



एन एच पी सी

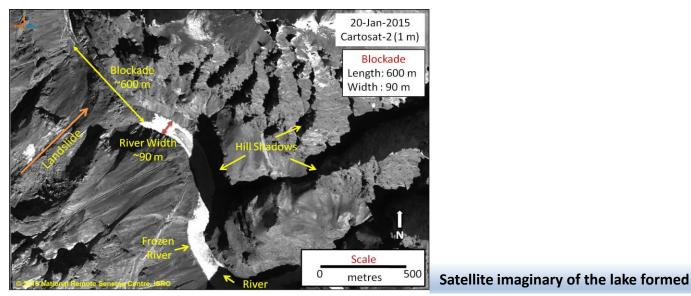
NHPC




एन एच पी सी *र्भ म P C*

Glacial Lakes In Kosi Sub Basin Of Ganga River Basin

- As per the Inventory by Glacial lake atlas of ganga river basin NRSC, May 2021, A total of 2,437 glacial lakes were mapped, covering a total area of 14,604.34 ha i.e. 0.24% of the total area of the subbasin out of which 20 lakes with area greater than 100Ha were marked.
- These lakes have also been identified by NHPC in Google Earth of which 2 potentially hazardous lakes were taken for GLOF study.
- The area of the largest lake (L1) has been estimated as 540 Ha.
- The lake is located at around 655 km u/s of the Dagmara Barrage site on Kosi River.



LLOF: Case Study by NHPC

PHUTKAL LANDSLIDE IN ZANSKAR BASIN (DEC 2014)

- An artificial lake was formed on River Phutkal, a tributary of River Zanskar due to landslide about 200 km upstream of Indus-Zanskar confluence on 31st Dec 2014.
- Dimensions of artificial dam: Length 500-600m, Height 50m, Width 50m to 60m.
- Dimensions of Artificial Lake:15 km long artificial lake with surface area of 55 Ha having volume of about 40 Mcum. Surface of Artificial lake formed was completely frozen.

Frozen view of the lake formed due to landslide

एन एच पी सी

NHPC

Landslide Lake Outburst Flood Simulation (By NHPC) – Jan 2015

Nimmo - Bazgo power station of NHPC being located on Indus river about 200 km d/s of lake, a tentative study to estimate the discharge on outburst of artificial lake was carried out. The lake busted on 07 May,2015 early morning causing flash floods.

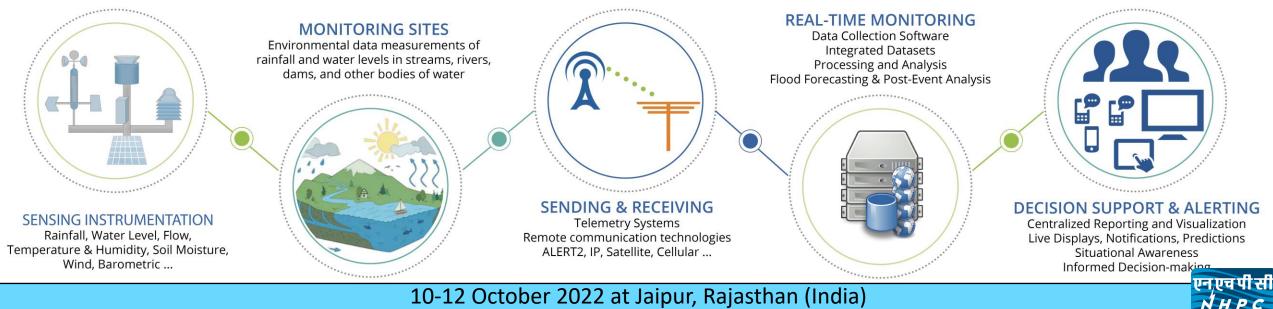
Analysis before lake burst

- Bottom breach width-60 m, breach depth-40 m, and time of failure-1 hours was adopted.
- Cross-Sections along Zanskar and Indus river for entire 200 km reach were developed on basis of ASTER DEM using ARC GIS software @ 4 km interval.
- Based on this study it was estimated that on the outburst of artificial lake, a discharge of about 1460 cumec would reach at tail end of Nimmo-Bazgo reservoir with the time lag of about 11 hours.
- As a precautionary measure, NHPC along with local administration had been monitoring the water level at various locations enroute Zanskar river.

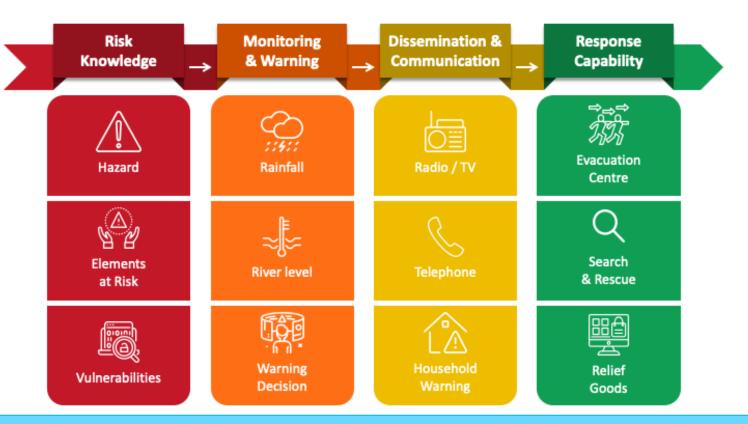
एन एच पी सी

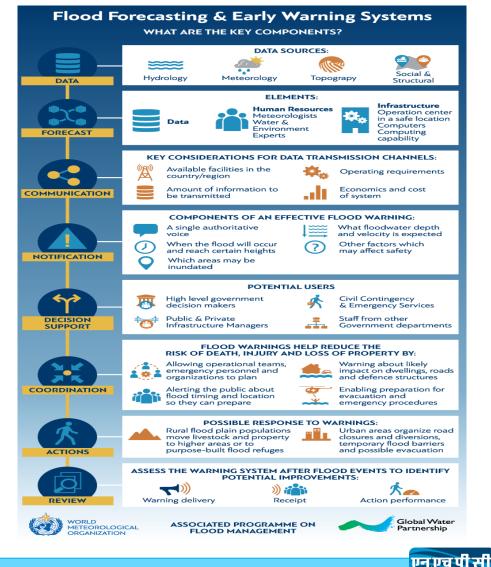
NHPC

Landslide Lake Outburst & Flood Management – 7th May 2015

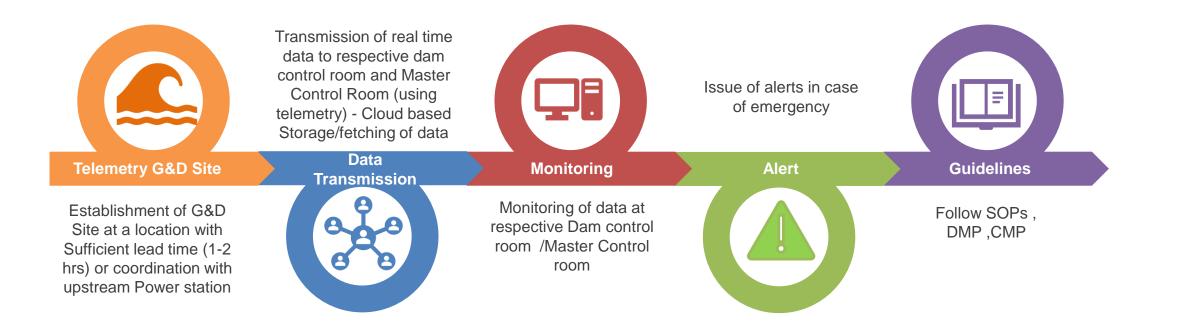

- ✤ The artificial lake formed got suddenly busted on 07 May,2015 early morning causing flash floods.
- As per analysis carried out in Jan 2015 based on preliminary breach parameters and lake volume (30MCM), the discharge at Nimmo-Bazgo dam site was estimated as 1400 cumec with lag time of about 11 hrs.
- As per actual data observed at dam site during this period, it was observed that the outburst resulted in an inflow of about 2757 cumec and had a lead time of about 12 hrs.
- ✤ The total volume released by the artificial lake was about 30 Mcum.
- For safe passage of flood in the downstream, reservoir level at the Nimmo Bazgo Power Station was kept 3 m below MDDL which could afford a capacity of 18 MCM, thus leaving about 12 MCM to be discharged d/s over a time base of about 6 hrs.
- The dam controlled the flood water in such away that the water level in the the downstream was kept below 3 m depth averting the disaster. The flood volume was absorbed effectively by the reservoir such as the maximum outflow downstream reduced to 1600 cumec.

Mitigation Techniques

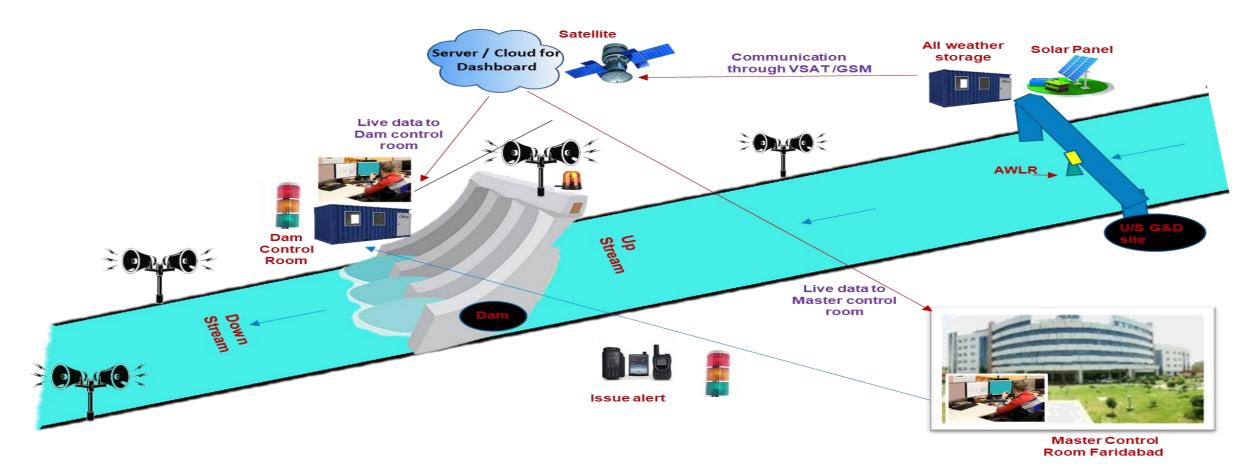

- Hydroelectric projects are predominantly located in Hilly regions. One study reveals that the project is prone to a wide variety of disasters, including floods, Earthquakes, Avalanches, Glacial outburst floods, and landslides.
- Himalayan Region has experienced multiple disasters, resulting in floods in downstream areas that claim a lot of lives, damage hydro-electric projects, or other infrastructure.
- The Early Warning System alerts people that flash floods are coming and lets them evacuate or take shelter in advance



Key Components of Early Warning System

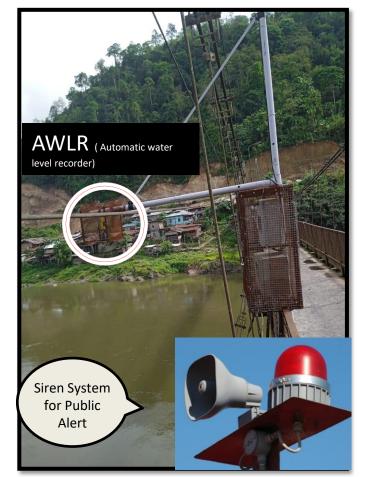


Working and steps of Early Warning System followed in NHPC

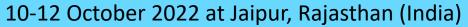


एन एच पी सी

NHPC


Early Warning System Established at NHPC

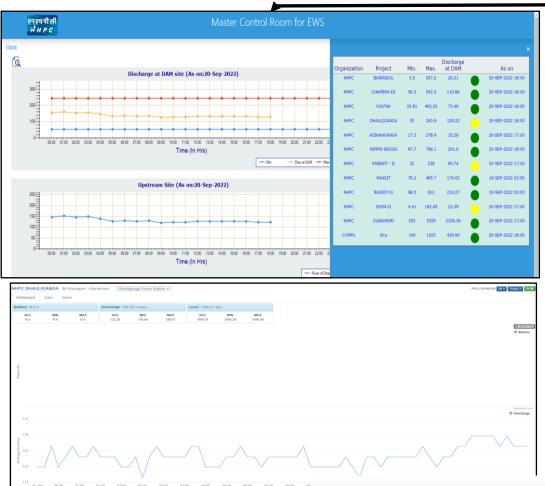
Early Warning System Established at NHPC Project site location



NHPC

एन एच पी सी

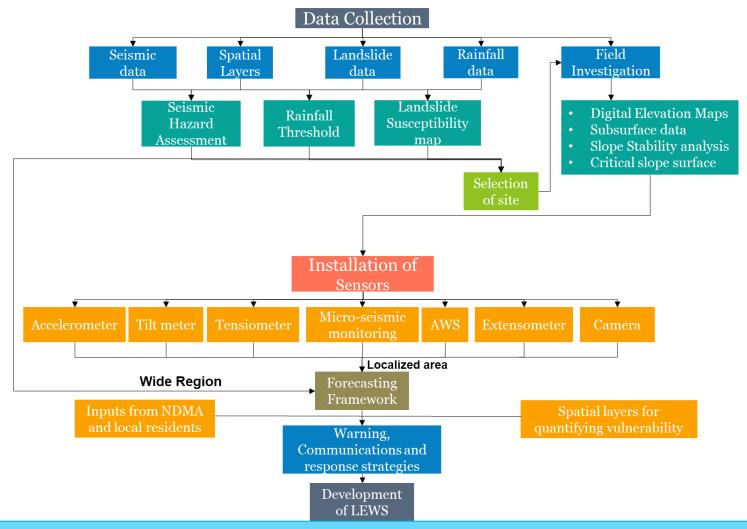
NHPC

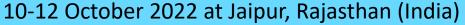

Dam Rehabilitation & Improvement Project Central Water Commission

Inhouse developed EWS portal to keep monitoring the projects of NHPC

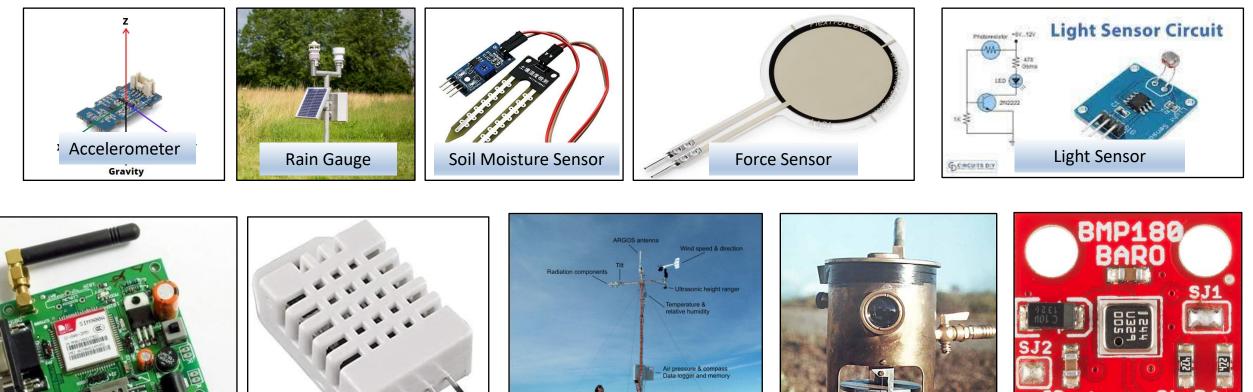
						User: 104321N, Date: 20-Sep-20
t: DHAULIGANGA POWER STATION		✓ Upstream	Site: River of Dhauliganga	O Water Discharge	Water Level	Report
Date	Time (HH:MI)	Level	Calculated Discharge	Network Status	Battery Status	Date & Time of Entry
20-SEP-2022	00:00	1550.64	146.29595	ОК 🗸	ОК 🗸	20-SEP-2022 00:20:24
20-SEP-2022	01:00	1550.71	152.33288	ОК	ОК ч	20-SEP-2022 01:36:42
20-SEP-2022	02:00	1550.64	146.29595	ОК	ОК 🗸	20-SEP-2022 03:29:02
20-SEP-2022	03:00	1550.67	148.88247	ОК	ОК ч	20-SEP-2022 03:29:02
20-SEP-2022	04:00	1550.56	139.40412	ОК	ОК ч	20-SEP-2022 04:12:17
20-SEP-2022	05:00	1550.41	126.50484	ОК	ОК ч	20-SEP-2022 05:44:43
20-SEP-2022	06:00	1550.45	129.94161	ОК	ОК	20-SEP-2022 06:06:56
20-SEP-2022	07:00	1550.41	126.50484	ОК	ОК ч	20-SEP-2022 07:24:36
20-SEP-2022	08:00	1550.45	129.94161	ОК	ОК ч	20-SEP-2022 08:17:49
20-SEP-2022	09:00	1550.33	119.63823	ОК	ОК 🗸	20-SEP-2022 09:18:12
20-SEP-2022	10:00	1550.37	123.07036	ок	ОК 🗸	20-SEP-2022 10:11:09

Aimil Ltd.	NHPC_GUREZ (User)				LOGOUT		
Aimii Ltd. Instrumentation & Technologies	SENSOR DASHBOARD PROJECT CONFIGURATION MS REPORT						
ISOR REPORT	Project Sensor Report				Close		
DJECT REPORT	07/09/2022	21/09/2022	Download Dashboard Search				
	NHPC GUREZ	V NHPC KISHANGANGA	v Device v	Desc By Time 👻			
	Pres 1 2 3 4 5 33 34 Hed						
			Battery Voltage	Level Elevation	Water Discharge		
		Date Time	mV	mtr	cumecs		
	18.09.2022	15:20:00	12624.0800	2411.6184	26.7994		
	18.09.2022	15:10:00	12735.5820	2411.6290	27.4629		
	18.09.2022	15:00:00	12837.7820	2411.6058	26.0266		
	18.09.2022	14:50:00	12938.1960	2411.6418	28.2806		
	18.09.2022	14:40:00	13042.3460	2411.6236	27.1233		
	18.09.2022	14:30:00	13136.3300	2411.6276	27.3745		
	18.09.2022	14:20:00	13225.1740	2411.6246	27.1860		
	18.09.2022	14:10:00	13304.5500	2411.6186	26.8118		
	18.09.2022	14:00:00	13376.1140	2411.6216	26.9984		
	18.09.2022	13:50:00	13446.6920	2411.6264	27.2990		
		10	13503.2220	2411.6218	27.0109		
		. 0	13565 2520	2411 5884	24.9874		

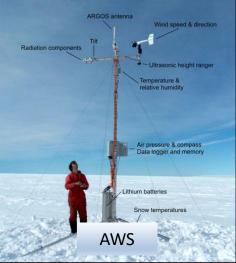

AWLR Sensor dashboard with real-time data supply



Proposed Methodology for developing LEWS (Landslide Early Warning System)

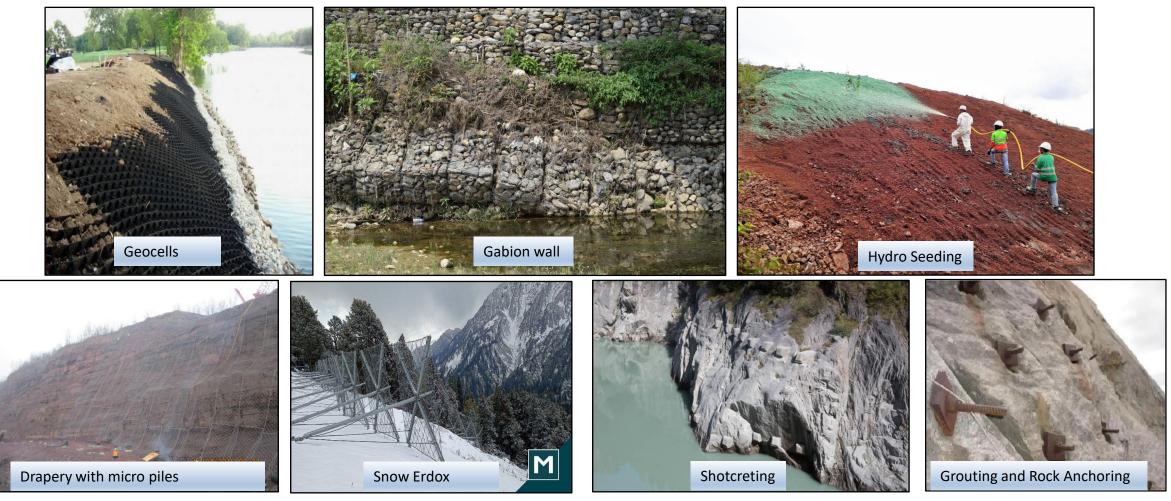


GSM Module


INTERNATIONAL DAM SAFETY CONFERENCE

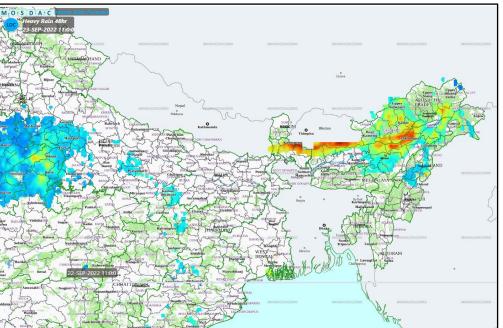
Sensors/ Equipment used in Landslide Early warning system

Humidity Sensor



NHPC

Various practices used to mitigate and prevent Landslide



Daily water level and forecasts level issued by Central water commission, Govt of India

Heavy rainfall forecasts issued by MOSDAC (Meteorological & Oceanographic Satellite Data Archival Centre) ISRO, Govt. Of India

National Flast Flood guidance Bulletin issued by IMD, Govt of India

Various other sources of forecasting natural hazards used in NHPC

10-12 October 2022 at Jaipur, Rajasthan (India)

MINISTRY OF EARTHSCIENCES INDIA METEOROLOGICAL DEPARTMENT HYDROMET DIVISION FLASH FLOOD GUIDANCE CELI

Ministry of

hours.

GOVERNMENT OF INDIA

एन एच पी सी

National Flash Flood Guidance Bulletin

TIME OF ISSUE: 1315 IST VALIDTILL: 1730 IST DATED: 22.09.2022

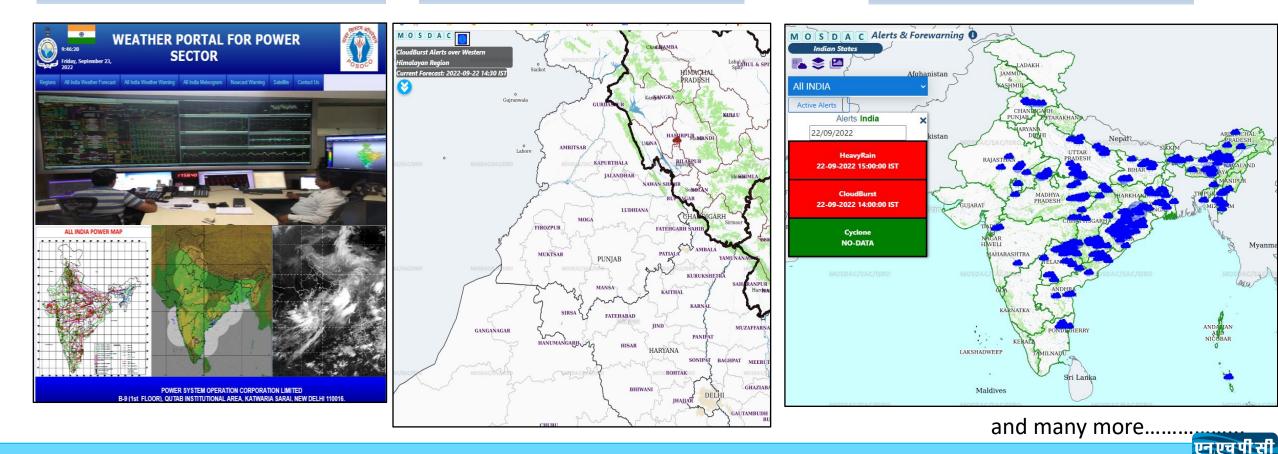
From: India Meteorological Department, New Delhi (Email Id: sasiaffg.imd@gmail.com)

To: RMC New Delhi, RMC Nagpur, MC Jaipur, MC Dehradun, MC Lucknow, MC Bhopal and concerned FMOs.

Area of Concern (AoC): Few watersheds and neighborhoods of East Rajasthan, West Madhya Pradesh, West Uttar Pradesh and Uttarakhand Met-Subdivisions.

Diagnostic Guidance: Based on Merged Mean Areal Precipitation at 1130 IST, recorded rainfall is up to 70 mm in last 6 hours and 130 mm in last 24 hours over few watersheds and neighborhood of AoC, East Uttar Pradesh and Assam & Meghalaya Met-Subdivisions. Land Surface Model shows few nearly saturated watersheds up to 85% to 95% over Uttarakhand, Himachal Pradesh, East Uttar Pradesh, East Madhya Pradesh, Vidarbha and Assam & Meghalaya and up to 55% soil saturation over remaining parts of the country.

Prognostic Guidance: Dynamic Global (GFS) & Mesoscale Model (WRF & NCUM) forecasts high rainfall 230 mm in next 24 hours.

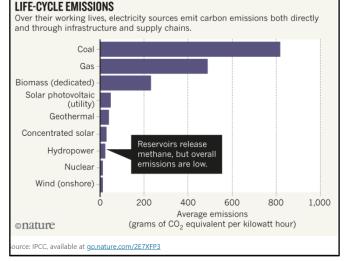


Various other sources of forecasting natural hazards used in NHPC

Weather Portal for power sector issued by IMD, Govt of India

Cloud Burst warnings issued by MOSDAC, Govt of India

Alerts & Forewarnings issued by MOSDAC, Govt of India



Dam Rehabilitation & Improvement Project Central Water Commission

How Hydropower helps to mitigate Climate Change

- ✤ Reduce our reliance on fossil fuels. hydropower avoids billions of tonnes of additional GHG emissions being emitted annually, versus coalfired generation.
- Beyond its power benefits, hydropower also provides water services. Reservoir storage capacity can be used for drinking water supply, irrigation and flood control. Increasing global water storage capacity is imperative to adapting to a warmer world and meeting growing water demand.

Hydropower is also a key asset for building secure, clean, electricity systems and reaching global net zero targets.

Thank You

