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Abstract 

The seepage problem in porous media and finding hydraulic properties of flow, is one of the most attractive 

subjects in the scientific field of porous media. Among these, evaluation of free surface profile through 

earth-fill dams with known water depth at both upstream and downstream reservoirs, is a major problem 

being considered in different ways by many researchers. Up to now, several numerical methods such as 

finite difference method, finite element method, finite volume method and some innovative methods (e.g., 

simulation by equivalent pipe network which is performed by Abareshi et al., 2017) utilizing commercial 

software or special purpose programs, have been applied to solve the aforementioned problem. However, it 

is interesting that there is an exact mathematical solution to this problem which is presented by 

Polubarinova-Kochina (1962). The main objective of this article is to consider this exact solution and re-

evaluating some of relevant calculations by Gauss quadrature integral method. In fact, Polubarinova-

Kochina solution process includes some mathematical concepts and methods such as hodograph method, 

Schwarz-Christoffel transformation, complex analytic functions, hypergeometricGauss function and etc., 

which are frequently expressed by some integrals. In this paper, we would try to calculate these integrals by 

Gauss quadrature method. Moreover, the results of this research are compared and verified with the results 

of studies done by previous researchers. 

Keywords: porous media, free surface profile, Polubarinova-Kochina exact solution, Gauss 

quadrature integral method. 

 

 

1. INTRODUCTION 
 

In different engineering projects such as environmental, hydraulics and civil engineering, in which flow through 

porous media is involved, seepage flow analysis plays a major role in hydraulic structures like dams and 

embankments. So problems related to slope stability and structure failure caused by seepage, are affected 

critically by seepage evaluation, which is achieved by solving governing equation. 

There have been many studies conducted to solve this problem by different numerical methods. For 

example,Hosseini and Sonei (2003) have solved governing equation of flow through rockfills by finite element 

method in a fixed grid [1]. Other researchers such as Tayfur et al. (2005), Soleimani and Akhtarpour (2011), 

Wang et al. (2015) have applied finite element method to solve such problems [2,3,4]. Finite difference method 

and finite volume method have also been utilized successfully by Jie et al. (2004), Kermani and Barani (2012), 

Darbandi et al. (2007) and Bresciani et al. (2012), etc[5,6,7,8]. 

In recent years, many other innovative methods have been applied to solve seepage problems. For 

instance, Abareshi et al. (2017) have implemented an equivalent pipe network model (EPNM) for analysis of 

nonlinear two-dimensional steady flow with free surface in a homogeneous isotropic coarse porous media [9]. 

Hayek (2019) has presented a new mathematical method as an approximate solution to the problem of flow 

caused by sudden changes of boundary heads in horizontal aquifers [10].Kazemzadeh-Parsi (2019) has 

considered the numerical solution offree surface flow problems in heterogeneous porous media [11].Kermani et 

al. (2019) have proposed mesh-free approach called smooth particle hydrodynamics (SPH) to solve governing 

equation of seepage flow in complex geometry problems [12].  

Besides old and recent studies in this field, Polubarinova-Kochina (1962) could find some formulas to 

provide the exact solution to the problem of steady-state flow with free surfacethrough a rectangular dam [13]. 

The work done by her is very worthy due to its usefulness for verificationof other approximate methods. 

Nevertheless,Polubarinova-Kochina’s formulas were rarely used as a referenceto evaluate the results of 

numerical methods. Maybe, the reason is that these formulas are not very easy to use. Hornung and Krueger 

(1985) used Polubarinova-Kochina’s formulas and computed the complex integrals by Romberg’s rule 
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[14].Theypresented exact numerical values in format of tables and graphs, which had not been valid before, for 

some sample cases.These results involve height of seepage face and the shape of the free surface of the flow 

passing through a dam. 

In this article, in a research similar to the study of Hornung and Krueger (1985), we consider 

Polubarinova-Kochina’s formulas for exact solution of free surface flow through porous media and useGauss 

quadrature integral methodto compute the related integrals. This method can somehow eradicate the difficulty of 

calculating these integrals. Then, we compare our results with those of Hornung and Krueger (1985).  

 

 

2. POLUBARINOVA-KOSHINA’S FORMULAS 
 

The general seepage problem considered by Polubarinova-Kochina (1962) has been described in Figure 

1.According to Figure 1, between two lakes of heights 
1H and H , There is a dam with homogeneous porous 

media of width L Above an impervious layer. The upper boundary,  , of the domain,  , is the free (pheratic) 

surface, location of which should be determined. 

 

 
Figure 1. Cross section of the dam considered by Polubarinova-Kochina (1962) [14] 

 

 

Polubarinova-Kochina (1962) applied the theory of linear differential equations to this problem and used 

the hodograph and complex potential planes and the solutions of the hypergeometric equationsto derive 

someformulas which contribute to calculating the height of the seepage face of the dam as followings [13]: 
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Where,  ,   and C are constants which should be determined. and  should satisfy the conditions 

0 1      and 
1 1   , 

1 1    and ( )K k is the complete elliptic integral of the first kind and defined 

by the following equation [13]: 
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It should be mentioned that by choosing an appropriate value for C , 
1H will equal 1 and other 

dimensions (
0H , H  and L ) will be scaled the same as 

1H . For doing the analysis,   and  should be 

determined for a special case by solving equations (1) and (2) simultaneously. After specifying these parameters, 

the seepage face height, 
0H , can be calculated by equation (3)[14]. 

In the next section, we define Gauss quadrature integral method which is used to deal with equations (1)-

(5) in this article. 

 

 

3. GAUSS QUADRATURE INTEGRAL METHOD 
Gauss quadrature method is an approximate way to compute complex integrals which cannot be computed easily 

by exact methods. This method is defined below [15]: 

 
1
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Where, f  is a function, integral of which is to be calculated, ng  is the number of key points that are 

located in the domain of integration, 
i  is the i th key point and 

iW  is the weight of each key point 
i .  

It should be noted that Gauss method with ng key points,can compute the exact integral of polynomials 

with maximum exponent of  2 1ng  . For the functions which are not in the form of a polynomial, the more key 

points are selected, the more exact the result will be. 

Here,for 4ng  , we try to compute 
i s and corresponding

iW s. 

As stated before, for 4ng  , the integral of a polynomial with exponent of 2 1 7ng    can be calculated 

exactly. So we have: 

 
7 6 5 4 3 2( )f a b c d e f g h                   (7) 

 

Where, , , , , , , ,a b c d e f g  and h are arbitrary coefficients of a polynomial with exponent of 7. 

The exact integral of the function in (7) can be computed easily as the following: 
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On the other hand, Gauss integral of this function for 4ng  is obtained according to (6) as: 
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 Forequation(8) being equal to equation (9), 8 equations which are mentioned below, should be satisfied: 
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The unknowns existing in the system of equations (10)-(17) are 
1 2 3 4 1 2 3, , , , , ,W W W    and 

4W , which 

can be obtained by solving these equations simultaneously. Finally the Gauss parameters are obtained as: 

1 0.861136  ,
2 0.861136   , 

3 0.339981  , 
4 0.339981   , 

1 0.347855W  , 
2 0.347855W  , 

3 0.652145W   and 
4 0.652145W  . 

Both 
iW  and 

i  have been determined specifically for each value of ng  in a table as the one presented 

below: 

 
Table 1- key points and corresponding weights in Gauss quadrature method [15] 

 
 

 

In the next section, we try to compute integrals of Polubarinova-Kochina’s formulas by Gauss method. 

 

 

4. SEEPAGE FACE HEIGHT EVALUATION  
 

Here, the exact solution to the seepage problemdefined by equations (1)-(4) is calculated by Gauss method for 

various values of L and H . But first, as mentioned before, ,  and C  should be determined foreach value of 

L and H .To this end, we have solved equations (1), (2) and (4) simultaneously. To use this method, we need the 

lower and upper limits of the integrals to be respectively -1 and 1. So we have to transform the variable   to   

by the following mapping: 
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After implementing this transformation, each integral with a general function of ( )g  would be changed 

as the following term and then we can use Gaussmethod as it is mentioned bellow: 
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For examplefor 0.5L   and 0.5H  and by choosing 3ng   for Gauss integral method, we derive the 

relevant equations here: 
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Where, H  and 
0H  is considered as equations (2) and (3),respectively,

i is evaluated by equation (18) for 

each value of 
i ( 1,2,3i  )and 

1( )if  , 
2 ( )if  , 

3( )if   and 
4 ( )if   have been defined as the following: 
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Where, ˆ ( )K k  is the Gauss integral of the function ( )K k  in equation (5) and is expressed as below: 

 

     
1 1 1
2 2 2

31 2

2 2 2

1 2 3

ˆ ( )
4

1 Sin ( ) 1 Sin ( ) 1 Sin ( )

WW W
K k

k k k

 
  

  
      
 

 (27) 

 

It is notable that according to Table 1, for 3ng  , 
1 0.77459  , 

2 0.77459   , 
3 0  , 

1 0.55555W   , 

2 0.55555W   and
3 0.88888W  . So by putting 0.5L  in (20), 0.5H   in (21) and 

1 1H   in (22), the 

complex integrals in these equations reduce to some simple algebraic formulas including radicals. For example, 

equation (20) is transformed into the following equation: 
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(28) 

 

after solving the system of equations (20)-(22), 0.47  , 0.53   and 0.12C   are obtained for this 

case. Now the height of the seepage face can be calculated by using these values, equation (3) and Gauss integral 

method by the following relationship: 

1 2

1296
L C 
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Where, 
3( )if   is defined in (26) and 

i and
i  are the same as the ones implemented in equations (23)-

(27) (ones assigned for 3ng   in table 1).According to calculations in (28), the value of 
0H for 0.5L   and

0.5H  equals 0.16. 

Tables(2)-(7) show the resulted 
0H obtained in this article for some other values of L  and H  for 3ng 

and 4ng  .Also the related results ofHornung and Krueger (1985)to which our results have been compared, can 

be seen in these tables. 

 

Table 2- Height of seepage face, 0H ,in terms of the depth of the right lake, H ( 0.5L  ) 

 

H 
[14] 

Present 

study 

(ng=3) 

Error 

(%) 

Present 

study 

(ng=4) 

Error 

(%) 

0.5 0.1624 0.1618 -0.37 0.1626 0.12 

0.4 0.2471 0.2462 -0.36 0.2468 -0.12 

0.3 0.3388 0.3376 -0.35 0.3383 -0.15 

0.2 0.4344 0.4335 -0.21 0.4339 -0.12 

0.1 0.5324 0.5323 -0.02 0.5320 -0.08 

0 0.6318 0.6310 -0.13 0.6312 -0.09 

 

Table 3- Height of seepage face, 0H ,in terms of the depth of the right lake, H ( 0.6L  ) 

H [14] 

Present 

study 

(ng=3) 

Error 

(%) 

Present 

study 

(ng=4) 

Error 

(%) 

0.5 0.1208 0.1198 -0.83 0.1209 0.08 

0.4 0.1952 0.1948 -0.2 0.1950 -0.10 

0.3 0.2796 0.2788 -0.35 0.2792 -0.14 

0.2 0.3706 0.3698 -0.21 0.3700 -0.16 

0.1 0.4659 0.4653 0.13 0.4655 -0.09 

0 0.5645 0.5637 -0.13 0.5640 -0.09 

 

Table 4- Height of seepage face, 0H ,in terms of the depth of the right lake, H ( 0.7L  ) 

H [14] 

Present 

study 

(ng=3) 

Error 

(%) 

Present 

study 

(ng=4) 

Error 

(%) 

0.5 0.0893 0.0857 -4.03 0.0893 0.00 

0.4 0.1531 0.1520 -0.72 0.1532 0.07 

0.3 0.2293 0.2285 -0.35 0.2291 -0.09 

0.2 0.3145 0.3136 -0.29 0.3140 -0.16 

0.1 0.4065 0.4065 0.00 0.4060 -0.12 

0 0.5040 0.5032 -0.16 0.5035 -0.10 

 

Table 5- Height of seepage face, 0H ,in terms of the depth of the right lake, H ( 0.8L  ) 

H [14] 

Present 

study 

(ng=3) 

Error 

(%) 

Present 

study 

(ng=4) 

Error 

(%) 

0.5 0.0660 0.0608 -7.88 0.0643 -2.58 

0.4 0.1200 0.1165 -2.92 0.1199 -0.08 

0.3 0.1877 0.1861 -0.85 0.1877 0.00 

0.2 0.2668 0.2657 -0.41 0.2665 -0.11 

0.1 0.3551 0.3550 -0.03 0.3547 -0.11 

0 0.4513 0.4508 -0.11 0.4508 -0.11 
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Table 6- Height of seepage face, 0H ,in terms of the depth of the right lake, H ( 0.9L  ) 

H [14] 

Present 

study 

(ng=3) 

Error 

(%) 

Present 

study 

(ng=4) 

Error 

(%) 

0.5 0.0488 0.0468 -4.10 0.0451 -7.58 

0.4 0.0941 0.0892 -5.21 0.0926 -1.59 

0.3 0.1540 0.1510 -1.95 0.1536 -0.26 

0.2 0.2270 0.2255 -0.66 0.2266 -0.18 

0.1 0.3114 0.3115 0.03 0.3108 -0.19 

0 0.4063 0.4065 0.05 0.4061 -0.05 

 

Table 7- Height of seepage face, 0H ,in terms of the depth of the right lake, H ( 1L  ) 

H [14] 

Present 

study 

(ng=3) 

Error 

(%) 

Present 

study 

(ng=4) 

Error 

(%) 

0.5 0.0362 0.0398 9.94 0.0335 -7.46 

0.4 0.0741 0.0715 -3.51 0.0705 -4.86 

0.3 0.1268 0.1237 -2.44 0.1250 -1.42 

0.2 0.1940 0.1926 -0.72 0.1932 -0.41 

0.1 0.2746 0.2752 0.22 0.2742 -0.15 

0 0.3682 0.3694 0.33 0.3682 0.00 

 

 

According to tables (2)-(7), in most cases, there is a very good agreement between the results of this research 

and Hornung and Krueger (1985)and also it is evident that increasing Gauss points often decreases the errors and 

increases the accuracy of the results.SoGauss quadrature integral methodis a reliable method which facilitates 

computation of corresponding integrals greatly and can be used in analytical solution of seepage problem in 

porous media to minimize the computational time and effort.  

For making the results more tangible, a 3D plot of 0H as a function of L and H , has been sketched out 

inFigure 2. 

 

 
Figure 2. 3D plot of 0H  versus L  and H  

5. CONCLUSIONS 
 

In this article, we considered Polubarinova-Kochina’sformulas whichare presented as an exact analytical solution 

to seepage problem through porous media. Gaussquadratureintegral method was utilized to compute the 

complicated integrals in these formulas.The complex formulas were transformed into some algebraic simple 

forms and even more simpler forms can be achieved in the future work. The results were compared to those of 

Hornung and Krueger (1985) and an acceptable agreement,which can be enhanced by increasing Gauss key 

points, was observed. So Gauss integral methodcan be consideredas an effective and fast way to determine the 

exact solution of a seepage problem whose results can be used to evaluate the accuracy and effectiveness of 

numerical methods. 
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