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Abstract 

This paper aims to take advantage of the decoupled[1]  and ideal-coupled[2] method in dynamic analysis 

of gravity dams. In this way, the capability of these methods is compared. The analysis is conducted in 

frequency domain, and the responses are transformed into the time domain with the help of Fourier 

transform.  Note that, the ideal-coupled approach has not been applied in the analysis of gravity dams. 

The finite element formulation of dam-reservoir systems results in unsymmetric eigenvalue problem, 

when pressure and displacements are the water and the dam unknowns, correspondingly. It should be 

highlighted that the unsymmetriceigensolvers are usually very time-consuming from execution point of 

view, and also complicated from programming point of view. The previously mentioned schemes were 

developed to symmetrize this eigenvalue problem required to be solved in frequency-domain analysis.  

Keywords: Concrete gravity dam, Decoupled method, Ideal-coupled method, Dynamic analysis. 

 

 

1. INTRODUCTION 
 

By using the finite element approach, the dynamic behavior of concrete gravity dam-reservoir systems 

can be studied. In usual, the dynamic analysis may be conducted in time or frequency domains. This type of 

analysis may be carried out in these domains either by direct or modal method. Therefore, finding the natural 

frequencies and corresponding mode shapes of the gravity dam is required in the dynamic analysis. To 

calculate natural frequencies and mode shapes, the eigen-value problem governing the free vibration of the 

dam-reservoir system should be solved. 

For proposing a new symmetric version of the originally non-symmetric coupled eigen-problem 

governing the free vibration of fluid-structure systems, Sandberg [3] utilized the eigen-vectors of each 

domain. In this method, the displacement finite element formulation for the solid and either pressure or 

displacement potential for the fluid were employed. This strategy was the advent of developing new 

generation of symmetrizing schemes without requiring the coupled modes shapes. Similarly, Lotfi[1] took 

advantage of the decoupled mode shapes instead of the coupled ones in the modal analysis. In this method, 

the decoupled mode shapes were envisaged as the Ritz vectors. It should be reminded that the decoupled 

eigen-problems are symmetric. Then, some researchers compared the capability of the decoupled tactic with 

the coupled one [4]. Then, AftabiSani and Lotfi[2] applied new mode shapes entitled ideal-coupled modes in 

the modal analysis of concrete arch dams. These modes were employed in a similar manner to the decoupled 

modes. However, they were actually coupled mode shapes of two ideal fictitious systems. It is worthwhile to 

mention that the coupled eigen-problem of these systems were symmetric. Recently, Rezaiee-Pajand et al. 

developed a new strategy entitled "quadratic ideal-coupled method" for finding the eigenpairs of the arch 

dams[5].   

In this paper, the decoupled and ideal-coupled method are employed for dynamic analysis of Pine Flat 

gravity dam. It should be reminded that the analysis is conducted in the frequency domain, and the results are 

transformed into the time domain. Then, their capabilities are compared. Note that, these methods have not 

been compared, yet.  

 

 

2. ANALYSIS METHOD 
 

To discretize the dam and fluid domain, the FE-(FE-HE) method is used. For brevity, the 

formulation is initially presented without considering the reservoir far-field region. Afterwards, the effects of 

this region areexplained for the general case. The coupled governing equation of the system has the coming 

appearance [4]: 
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Where ,M K  and C  denote the mass, stiffness and damping matrix of the dam body, correspondingly. 

Moreover ,G H and L  are the generalized mass, stiffness and damping of the fluid domain, respectively. 

And, B  is the interaction matrix which relates the fluid pressure to the structural acceleration[6]. 

Additionally, vectors r  and p  contain the unknown nodal displacements and pressures, respectively. 

Furthermore, J  is a matrix with each its two rows are an 2 2  identity matrix.Also, 
g

a  is the vector of 

ground accelerations. By conducting the Fourier transform, the matrix Eq. (1) can be rewritten into the next 

form: 
2 T

g

2 2
g

(1 2 i)

i

d
 

  

   


   

     
     

    

MJaM K B r

BJaB G L H p

 (2) 

where i and   are the imaginary unit and the natural frequency of the system, respectively. It should be 

reminded that the hysteretic damping matrix is used in the aforementioned relation. This matrix has the 

subsequent shape[2]: 

2
d




C K

 

(3) 

In the last relation, 
d

   is the constant hysteretic factor of the dam body. It is worth emphasizing that the 

coupled equation of a dam with the finite reservoir system in the frequency domain is shown by Eq. (2). 

 

 

3. FREE VIBRATION ANALYSIS 
 

It is clear that the eigenvalue problem corresponding to Eq. (2) can be written as follows [6]: 

T
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(4) 

It is clear that the above-mentioned linear eigenvalue problem is similar to that of the free vibration equation 

of un-damped systems. But it is not symmetric. This unsymmetrical linear eigenvalue problem is required to 

be solved for finding the eigenpairs of the dam-reservoir system. The actual coupled eigenpairs can be 

calculated by directly solving the original eigenvalue problem (4). Using the obtained eigenvectors in the 

modal analysis results in more accurate responses, in comparison to the other available alternatives. 

Nevertheless, the standard eigen-solvers cannot be employed for solving this equation because of its 

unsymmetry. According to other researchers, the unsymmetrical eigenvalue solution routines are more time-

consuming than symmetrical ones. From the programming point of view, these methodsare more 

complicated, as well[2, 4, 7]. In this work, the decoupled and ideal-coupled method are applied.  

 

4. DECOUPLED EIGENPROBLEM 
 

By removing the interaction matrix B , a symmetric shape of the original eigenvalue problem (4) 

can be obtained[1]: 

2
  
         
        
         

M 0 K 0 r 0

0 G 0 H p 0
 

(5) 

Obviously, this eigenvalue problem is symmetric. Hence, it can be solved by using standard eigen-

solvers. The eigenvectors of these symmetric equations are not the true mode shapes of the actual system, but 

they can be utilized in a modal analysis method named "decoupled modal strategy". It should be noted that 

the decoupled eigenvectors can be considered as the Ritz vectors. Consequently, it can be shown that 

employing all of these modes leads to the exact answers. It is worthwhile to mention that the eigenvalues 

achieved from the decoupled eigenproblem are the natural frequencies of the dam and reservoir separately[2]. 
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5. IDEAL-COUPLED EIGENPROBLEM 
 

Herein, instead of the true coupled one, the eigenproblems corresponding to two ideal dam-reservoir 

systems are solved. In the first ideal system, the fluid is assumed to be incompressible, and the dam is 

massless in the second one. In comparison to the decoupled ones, the eigenvalues of these problems are 

closer to the natural frequencies of the actual coupled dam-reservoir system. Moreover, the obtained 

eigenvectors are more similar to the actual ones. These vectors can be used in a modal analysis approach 

named "ideal-coupled modal strategy" [2].The simplified form of the first ideal eigenproblem has the 

following shape: 

 2
a     M M K r 0  (6) 

In this equation, aM  denotes the added mass matrix and can be calculated as follows: 

T 1
a


M B H B  (7) 

The pressure vector can be obtained by employing the succeeding equation: 
2 1




p H Br  (8) 

Clearly, the size of this eigenproblem is equal to the number of the unknown nodal displacements. The 

second ideal eigenvalue problem has the next appearance: 

 2

a
     G G H p 0

 
(9) 

where 

1 T

a


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(10

) 

The displacement vector can be obtained by utilizing the next relation: 
1 Tr K B p  (11) 

It is obvious that the size of the second ideal eigenvalue problem equals the number of unknown nodal 

pressures of the fluid domain.The above-cited ideal eigenproblems can be rewritten as below: 
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(12

) 

This eigenproblem is linear and symmetric. Hence, its solution can be calculated by employing the 

standard common methods. It is clear that omitting 
a

M  and 
a

G from Eqs. (6)-(9) leads to the decoupled 

eigenvalue problem. Therefore, the decoupled form of the actual eigenproblem is a special case of the ideal-

coupled one. It should be remarked that the ideal-coupled approach is more accurate than the decoupled 

one[2]. 

 

 

6. NUMERICAL EXAMPLES 
 

In this work, the finite element method was used for the main part of the analysis procedure. For this 

purpose, a computer program was developed based on the theories proposed in the previous sections. 

Accordingly, the solid finite elements are applied for modeling the dam, and the near-field and far-field fluid 

domains are discretized by the fluid finite elements and hyper-elements[8], correspondingly. It should be 

mentioned that the true coupled, decoupled and ideal-coupled are the available options for the dynamic 

modal analysis of the gravity dams in this computer program. In the subsequent sections, to comparethese 

methods, they are employed for the dynamic analysis of Pine Flat gravity dam under vertical and horizontal 

components of Taft earthquake [9]. In Figures 1, the ground motion record corresponding to this earthquake 

are presented. 
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(a) 

 
(b) 

Figure 1. Taft earthquake component  

 

 

The responses of the dam crests are computed as a result of horizontal and vertical excitations for 

reflection coefficient ( ) equal 1. Note that; 1   represents the full reflection. The achieved results are 

compared with the exact ones (i.e. those achieved from the direct method using all the true coupled mode 

shapes). 

 

 

6.1. MODELING 
 

Herein, the aforesaid methods are applied in the dynamic analysis of Pine Flat gravity dam. The 

finite element model of the dam on a rigid foundation is studied. The dam is discretized by 40 isoparametric 

8-node plane-solid finite elements. It should be mentioned that the water domain contains near-field and far-

field regions. After the near-field region, the far-field part starts and extends to infinity in the upstream 

direction. 90 isoparametric 8-node plane-fluid elements are used for modeling the near-field region with the 

length of 200 m, and the far-field part is modeled by a fluid hyper-element, including 9 isoparametric 3-node 

sub-elements. The used mesh pattern was previously applied by other researchers [4]. In Figure 2, the finite 

element model of Pine Flat dam and its reservoir are shown. 
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Figure 2. Dam body with the near-field and far-field fluid regions 

  

It should be added that Pine Flat dam has a sloped upstream face. The hyper-elements should connect 

to the vertical sides of the finite elements to have more accuracies[8, 9]. As a result, this slope should 

gradually be diminished prior to connecting the hyper-elements to the finite elements in the finite element 

region.The dam body is made of homogenous concrete with isotropic linearly viscoelastic behavior whose 

elasticity modulus, Poisson's ratio and unit weight are 22.75Gpa , 0.2 and 
3

24.8 kN m , respectively. 

Moreover, the hysteretic damping factor is assumed to be 0.05. Additionally, the impounded water is 

presumed to be compressible, inviscid and irrotational, and its unit weight and pressure wave velocity are 
3

9.81kN m and1440 m s , correspondingly.  

 

6.2. FREE VIBRATION RESPONSES 
 

At the first stage, the first five natural frequencies of this dam are presented in Tables 1 and 2.  

 
Table 1- The first five natural frequencies of Pine Flat dam-reservoir system with 

200L m  

Mode 

Number 

Natural frequencies fi (Hz) 

Decoupled 

[4] 

Ideal-coupled True coupled 

[4] 

Dam First ideal case (incompressible fluid 

assumption) 

 

1 3.15 2.67 2.53 

2 6.48 5.77 3.27 

3 8.74 8.66 4.67 

4 11.25 10.35 6.22 

5 16.99 15.98 7.92 

 
Table 2- The second five natural frequencies of Pine Flat dam-reservoir system with 

200L m  

Mode Number Natural frequencies fi (Hz) 

Decoupled 

[4] 

Ideal-coupled True coupled 

[4] 

Reservoir Second ideal case (incompressible fluid 

assumption) 

 

1 3.12 2.94 2.53 

2 4.75 4.24 3.27 

3 7.80 6.05 4.67 

4 9.30 7.92 6.22 

5 9.96 9.46 7.92 

 

 

It is clear that the ideal-coupled results are more accurate, in comparison to those of the decoupled one.  

 

 

6.3. TIME HISTORY RESPONSES 
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At this stage, the crest responses of PineFlat dam are presented in time domain for 13 sec. It should be 

mentioned that the effect of static loads including hydrostatic pressure and the dam weight are ignored.  As 

previously mentioned, the dynamic analysis is conducted in the frequency domain and the responses are 

transformed into the time domain by using Fourier Transform. Herein, two modes of the dam-reservoir 

system are applied. It should be reminded that the decoupled, ideal coupled and true coupled eigenpairs are 

used in this process, and the obtained results are compared. In Figures3, the displacement of the dam crest 

under the horizontal component of Taft earthquake are presented, respectively. 

 

 
 

 
Figure 3. Time history of dam crest based on horizontal excitation for 1   

 

 
In Figures4, the crest displacement of PineFlat dam is presented under vertical component of Taft 

earthquake for  1  . 
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Figure 4. Time history of dam crest based on vertical excitation for 1   

 

 
It is obvious that, by using the ideal-coupled method in modal dynamic analysis more accurate results 

can be achieved, in comparison to the decoupled approach. 

 

 

7. CONCLUSIONS 
 

In usual modal dynamic analysis is conducted for assessing the dynamic behavior of concrete 

gravity dams. For this purpose, the eigen-value problem governing the free vibration of this system is 

required to be solved. For this purpose, various options, including true coupled, decoupled and ideal-coupled 

methods, are available. The first one takes advantage of the accurate mode shapes while the others use the 

approximate ones. This paper was devoted to employ the decoupled and ideal-coupled approaches in modal 

dynamic analysis of PineFlat gravity dam to compare the accuracy of these approaches. Findings shows that 

using ideal-coupled approach leads to more accurate responses, in comparison to the decoupled one.  
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